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Abstract

Brain N-methyl-D-aspartate (NMDA) glutamate receptors have been implicated as important mediators of both learning and neuronal
development. The current study investigated how ketamine (a well-known NMDA-receptor blocking drug) influences taste-mediated
conditioned motor responses (CMRs) in perinatal rats. Dams pregnant with either embryonic day 18 (E18) or E19 rat fetuses were
injected with 0 or 100 mg/kg ketamine HCl (i.p.). One-half hour later, a reversible spinal block was performed on the dam and fetuses
received oral lavage with 10 ml, 0.3% saccharin (SAC) or water (control) in utero. After the oral injection, fetuses received either a saline
(control) or lithium chloride (LiCl) injection (81 mg/kg, i.p.). The uterus was replaced and, 2 days later (E20 or E21), some rats received
oral lavage with SAC. Other litters were born via normal vaginal delivery or Cesarean section and orally exposed to SAC on post-natal
day 3 (P3). Motor responses were observed immediately after the oral lavage of SAC. If SAC had been paired with LiCl in utero, pups
generally exhibited conditioned suppression of orofacial movements (as compared to controls). Ketamine significantly attenuated this
taste-mediated CMR of animals conditioned on E19. However, the same treatments did not disrupt CMRs of rats treated with ketamine
before CS–US pairing on E18. Our findings indicate an age-dependent role for NMDA receptors in the formation of CMRs in perinatal
rats.  2001 Elsevier Science B.V. All rights reserved.
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Rats may acquire taste-mediated conditioned motor glutamate N-methyl-D-aspartate (NMDA) receptors altered
responses (CMRs) in the perinatal period. Pairing oral memory formation of perinatal rats in an age-dependent
lavage of a chemical stimulus with an intraperitoneal (i.p.) manner. Administration of ketamine (a well known NMDA
injection of LiCl on E17, E18 or E19 creates conditioned receptor blocker) [5,28] before CS–US pairings potentiated
suppression of rat fetal activity when subjects were re- a conditioned taste aversion (CTA) in E18 fetuses [13].
exposed to the same stimulus 2 days later [17,26,27]. However, when injected with equivalent doses of

Our previous studies have shown that blockade of ketamine, P0 neonates later failed to exhibit a CTA [14].
These data are remarkable since ketamine usually disrupts
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that the CMR of ketamine-treated fetuses conditioned on (37.5618C) containing isotonic saline (Locke’s solution)
E18 is preserved while these same responses are blocked if [7]. Both uterine horns were exteriorized through the
ketamine is administered before a CS–US pairing on E19. abdominal incision and allowed to float freely in the bath.

The subjects were fetal and neonatal Sprague–Dawley All fetuses in a particular litter received oral lavage of
rats (male and female) obtained from timed-pregnant dams either the conditioned stimulus (CS510 ml 0.3% sac-
supplied by Zivic-Miller Laboratories (Zelienople, PA, charin, SAC) or a control vehicle injection (10 ml distilled
USA). Pregnant animals (from which our subjects were water) through the uterine wall. Fifteen minutes following
derived) were individually housed in plastic ‘shoe box’ CS administration, rats received i.p. injection of the
cages (44.45 cm long321.59 cm wide320.32 cm high). unconditioned stimulus (US581.0 mg/kg LiCl) or a
Home cage temperature was maintained at 23–268C under control vehicle injection of saline. Thus, three combina-
a 12/12 h light–dark cycle starting at 06:00 h. tions of injections defined our main treatment groups: (1)

Studies of CTA typically involve a conditioning trial, SAC1LiCl: the main taste aversion conditioning group;
latent period, and subsequent test for retention. In order to (2) SAC1Sal: controls for the non-conditioned effects of
avoid confounds induced by requiring subjects to re- the CS alone; (3) water1LiCl: controls for the non-
member conditioned responses for variable periods we conditioned effects of the US. Following injections, the
used a standard 2-day conditioning-test latency for rats of uterus was replaced, the abdominal wall and the skin of the
different ages. Throughout this manuscript, these animals dam sutured, and wounds infused with local anesthetic
are referred to as ‘latency-constant’ groups. Specific (bupivicaine; 0.25%) to produce post-surgical analgesia.
references are made to E18–E20 or E19–E21 (condition- For fear of mixing chemical stimuli among fetuses, all
ing age–testing age) animals. We employed additional pups in the same litter received the same treatments. This
animals on a different training-test schedule to keep procedure necessitated special data analysis techniques (see
constant their age at time of testing. Animals in these later).
‘age-constant’ groups were tested on P3 independent of If fetuses were tested on E20 (i.e., E18–E20 subjects),
conditioning on E18 or E19. These groups of animals are dams were provided analgesia using an irreversible spinal
referred to as E18–P3 and E19–P3. See Table 1 for the block (0.1 ml 100% ethanol) via the general method
complete outline of experimental design and numbers of described above. Both uterine horns were exteriorized
subjects in each group. through the abdominal incision, and allowed to float freely

One-half hour before fetal injections began (see below), in the Locke’s bath. Fifteen minutes were allowed to
pregnant dams received injection of either 100 mg/kg elapse before onset of behavioral observations, to allow the
ketamine HCl (Sigma), i.p. or equal volume of physiologi- dam and fetuses to recover from IsofluraneE anesthesia
cal saline. This dose of ketamine was selected based on used during the spinal block procedure. Still attached to the
data from previous experiments [13,14]. Other studies have dam via umbilical cords, fetuses were removed from the
shown that a maternal dose of 50 mg/kg ketamine is less uterus and floated in the Locke’s bath. A 20-gage stainless
effective in producing effects reported here [18]. steel injection tube was placed in each fetus’s mouth and

Fetal injections and fetal /neonatal behavioral testing 10 ml SAC injected into the oral cavity. Behavior was
were conducted as described previously [16,17]. Pregnant videotaped for 1 min immediately before (baseline) and
dams were temporarily anesthetized with IsofluraneE after oral SAC injection.
before undergoing a reversible spinal block procedure. The All rats in the E19–E21, E18–P3 and E19–P3 groups
analgesic dam was restrained in a plastic holding apparatus were tested as neonates. If rats had not been born 4 h
and her vision of the procedure restricted. Uterine horns before the scheduled behavioral test on E21, they were
were exposed through midline laparotomy and the hind removed by Cesarean section. Sixteen of the 23 E19–E21
legs and lower abdomen immersed in a warm bath litters experienced this procedure. Cesarean section was

Table 1
Experimental design and number of subjects (litters) in each group

aLatency/age- Drug treatments
constant groups

Saline Ketamine (100 mg/kg, i.p.)
bSAC1LiCl SAC1saline Water1LiCl SAC1LiCl SAC1saline Water1LiCl

cE18–E20 14 (3) 13 (3) 15 (3) 16 (4) 15 (4) 14 (4)
E19–E21 19 (5) 17 (4) 12 (2) 18 (4) 20 (5) 14 (3)
E18–P3 11 (3) 14 (4) 12 (2) 13 (3) 12 (6) 10 (5)
E19–P3 11 (3) 10 (2) 15 (5) 14 (3) 17 (4) 14 (4)
a Drug treatments were administered to pregnant dams 30 min before conditioning.
b SAC510 ml 0.3% saccharin oral lavage (CS); LiCl5lithium chloride (81 mg/kg, i.p.) (US); control injections of water or saline were also administered.
c First embryonic (E) age indicates post-insemination conditioning day; second embryonic or postnatal (P) day represents behavioral testing age.
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accomplished while the dam was provided analgesia via dent, random, nested factor (within conditioning treat-
irreversible spinal block (0.1 ml 100% ethanol) using the ments). This approach controlled for litter effects and
procedure described above. For behavioral observations, offered a direct statistical test of the significance of such
neonates were placed in a warm (28618C), high-humidity effects [6,10]. However, effects attributable to litter were
chamber on a glass plate warmed (via circulating water) to not statistically significant and therefore subsequent analy-
36618C. Pups received oral lavage with 10 ml SAC ses were run without this factor. Post hoc analyses
through a blunt 18-gage stainless steel infusion needle. employed Duncan’s Multiple Range Test [12]. An a50.05
Subjects were then placed (ventral side down) on the glass was adopted throughout these tests.
plate. Using a mirror, behavior was videotaped from below An injection of LiCl causes a reduction in spontaneous
the animal as described previously. activity [26] in fetal and neonatal rats. The current studies

Videotaped behaviors were later reviewed by a practiced corroborate those of Smotherman and Robinson [26] (see
observer and scored using The ObserverE software (Nol- Ref. [27] for review) who demonstrated that a single
dus Information Technology). Using a modification of the pairing of a taste CS with LiCl can produce conditioned
methods described by Smotherman et al. [25], we sorted suppression of orofacial movements when the animal is
observed behaviors into 12 categories of spontaneous fetal / later re-exposed to the CS. Further, our data indicate that if
neonatal movements. Because they seemed the most ketamine is administered before CS1US pairing, it can
sensitive indicators of CMRs, this paper focuses on influence CMRs in an age-dependent manner. Specifically,
orofacial movements: a combination of mouth movements the same dose of ketamine that blocks CMRs acquired by
and licks. The interrater reliability of behavioral scoring is E19 rat fetuses fails to disrupt CMRs developed in E18
high (r50.91). fetuses. We refer to this phenomenon as the ‘ketamine

Neonates born via Cesarean section exhibited mouthing paradox’.
and licking responses statistically indistinguishable from The three-way ANOVA of the mouthing and licking
those of pups that underwent normal vaginal delivery. responses of E18–E20 and E19–E21 rats revealed a
Therefore, the data from Cesarean and vaginally born significant Age effect [F(1,179)574.16, P,0.01], a sig-
animals were combined in all analyses reported. Likewise, nificant CS–US Treatment effect [F(1,179)56.67, P,

preliminary analyses revealed that the subjects in the two 0.01], a significant Treatment3Drug interaction
control groups (SAC1Sal, water1LiCl) did not differ [F(1,179)57.67, P,0.01], and a significant Age3

significantly from one another, and the animals were Treatment3Drug interaction [F(1,179)57.05, P,0.01].
pooled and treated as ‘combined controls’. Post hoc analyses showed that oral lavage with SAC on the

One group was tested as fetuses (E18–E20) while the test day produced a conditioned suppression (as compared
other groups were tested using the neonatal procedure. to controls) of mouthing and licking in both E18–E20 and
Previous control experiments have demonstrated that, E19–E21 animals treated with saline before the initial
following oral lavage with SAC, E20 fetuses show orofa- CS1US pairing (Fig. 1). E18 fetuses pre-treated with
cial motor responses similar to those seen in E21 neonates ketamine maintained a significant CMR when tested on
[16]. Still, comparisons of different aged rats may be E20. However, E19 animals that received ketamine failed
challenged by the fact that quantity of spontaneous move- to show significant conditioned suppression of mouthing
ment generally increases as rats move through the perinatal and licking movements on E21. Ketamine’s effects on the
period. In an attempt to control for differences in level of formation of CMRs appear to be age-dependent.
overall activity demonstrated in the fetal vs. neonatal Age-constant groups (E18–P3; E19–P3) required to
testing situation, our treatment of the data included an maintain a CMR over a 5–6 day period exhibited the
initial analysis of covariance. Here we used as a covariate ketamine paradox – but less dramatically. The three-way
each animal’s total activity (a total of head, mouth, lick, ANOVA comparing the mouthing and licking responses of
gape, curl, stretch, twist, roll, hindlimb, forelimb, E18–P3 and E19–P3 rats revealed a significant CS–US
facewipe, and twitch movements) [25] during the baseline Treatment effect [F(1,145)57.61, P,0.01] and a signifi-
period. Each dependent variable was analyzed through a cant Drug effect [F(1,145)53.86, P,0.05]. Groups of
three-way Analysis of Covariance (ANCOVA) of the form: saline-treated rats conditioned on E18 and E19 signifi-
Age (E18–E20 or E19–E21)3Drug (0 or 100 mg/kg cantly reduced their mouthing and licking following oral
ketamine)3Treatment (Sac1LiCl or combined controls). lavage of SAC on P3 (Fig. 1). Ketamine blocked the
Similar ANCOVAs were employed to evaluate the be- CMRs of E19–P3 neonates. However, E18 rats pre-treated
havior of age-constant animals. We used a linear model with ketamine and SAC1LiCl continued to show con-
(SASE, SAS Institute, Carey, NC, USA) compensating for ditioned suppression of mouthing and licking following
unequal n values. If the covariate effect was not statistical- oral lavage with SAC on P3.
ly significant (P.0.05) then subsequent analyses of vari- The experiments reported here confirm previous indica-
ance (ANOVAs) were run without the covariate. tions of a paradoxical, age-dependent effect of ketamine on

Since all rats in a particular litter received the same learning. Prior studies suggested that ketamine (100 mg/
conditioning treatment, we included litter as an indepen- kg, i.p. delivered to the dam) potentiated CTA established
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Fig. 1. Mean number of mouthing and licking responses following exposure to SAC. Fetuses aged E18 (panels A & C) or E19 (panels B & D) received a
single pairing of SAC (10 ml, 0.3% saccharin delivered orally) and LiCl (81 mg/kg lithium chloride, i.p.) or a set of control injections (see text for
methods) and were observed either 2 days later (panels A or B) or on P3 (panels C & D) following a taste of SAC. Fetuses receiving saline before
SAC1LiCl pairing exhibited conditioned suppression of mouthing and licking movements when re-exposed to SAC. Exposure to ketamine before
SAC1LiCl conditioning blocked this response in pups conditioned on E19. However, ketamine failed to disrupt conditioned responses in rats trained on
E18. *5Significantly different (P,0.05) from combined control group. Variance measures are the S.E.M.

in E18 rat fetuses [13], but an equivalent dose of the drug enhance measures of conditioned perseverative responding
blocked CTAs in P0 neonates [14]. In early experiments when administered on E18, while blocking this response in
neonatal avoidance of SAC-painted nipples was recorded E19 rats [18].
as an indicator of CTA. In the current studies we evaluated We have explored possible alternative, non-associative
the generalizability of the ketamine paradox by investigat- explanations for these findings. Could our data be pro-
ing CMRs. These data not only indicate that the paradox duced by ketamine-induced alteration of gustatory or
may be observed in a variety of behavioral contexts, but visceral sensation of SAC or LiCl? The plausibility of this
also suggest that ketamine’s effects on memory change explanation is weakened by evidence suggesting that
between E18 and E19. These data are similar to those NMDA receptors do not play a prominent role in mediat-
found in a preliminary report suggesting that ketamine can ing sensory aspects of taste or malaise [4,15]. Ketamine
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